19 research outputs found

    ModĂ©lisation de l’évolution hydroclimatique des flux et stocks d’eau verte et d’eau bleue du bassin versant de la Garonne

    Get PDF
    La gestion intĂ©grĂ©e de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociĂ©tĂ©s de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu Ă  l’autre. Il est possible de simplifier cette question en s’attardant plutĂŽt aux deux destinations de l’eau. L’eau bleue forme les rĂ©serves et les flux dans l’hydrosystĂšme : cours d’eau, nappes et Ă©coulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphĂšre. Elle inclut l’eau consommĂ©e par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intĂ©ressant gĂ©nĂ©ralement qu’au devenir des dĂ©bits ou, plus rarement, Ă  la recharge des nappes. Le portrait global est alors manquant. Dans un mĂȘme temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de maniĂšre distincte les diffĂ©rents composants de cycle hydrologique. L’étude rĂ©alisĂ©e ici utilise l’outil de modĂ©lisation SWAT afin de rĂ©aliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystĂšme du bassin versant de la Garonne. Une premiĂšre partie du travail a permis d’affiner la mise en place du modĂšle pour rĂ©pondre au mieux Ă  la problĂ©matique posĂ©e. Un soin particulier a Ă©tĂ© apportĂ© Ă  l’utilisation de donnĂ©es mĂ©tĂ©orologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramĂštres du modĂšle a Ă©tĂ© testĂ© dans un contexte differential split sampling, en calant puis validant sur des annĂ©es contrastĂ©es en terme climatique afin d’apprĂ©hender la robustesse de la simulation dans un contexte de changements climatiques. Cette Ă©tape a permis une amĂ©lioration substantielle des performances sur la pĂ©riode de calage (2000-2010) ainsi que la mise en Ă©vidence de la stabilitĂ© du modĂšle face aux changements climatiques. Par suite, des simulations sur une pĂ©riode d’un siĂšcle (1960-2050) ont Ă©tĂ© produites puis analysĂ©es en deux phases : i) La pĂ©riode passĂ©e (1960-2000), basĂ©e sur les observations climatiques, a servi de pĂ©riode de validation Ă  long terme du modĂšle sur la simulation des dĂ©bits, avec de trĂšs bonnes performances. L’analyse des diffĂ©rents composants hydrologiques met en Ă©vidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbĂ©es au niveau du stock de neige et des dĂ©bits qui prĂ©sentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont Ă©tĂ© rĂ©alisĂ©es (2010-2050) en sĂ©lectionnant une gamme de scĂ©narios et de modĂšles climatiques issus d’une mise Ă  l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirĂ©es de la pĂ©riode passĂ©e : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la pĂ©riode estivale est telle qu’elle en vient Ă  rĂ©duire les flux d’évapotranspiration rĂ©elle, mettant en Ă©vidence le possible dĂ©ficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les dĂ©bits semblent cette fois en hausse pendant l’automne et l’hiver. Ces rĂ©sultats sont un signe de l’«accĂ©lĂ©ration» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des Ă©vĂšnements extrĂȘmes de prĂ©cipitation. Ce travail a permis de rĂ©aliser une analyse des variations de la plupart des composantes du cycle hydrologique Ă  l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour Ă©valuer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau

    Modélisation de l'évolution hydroclimatique des flux et stocks d'eau verte et d'eau bleue du bassin versant de la Garonne

    Get PDF
    "ThĂšse en cotutelle, doctorat en gĂ©nie des eaux: UniversitĂ© Laval QuĂ©bec, Canada Philosophiae doctor (Ph.D.) et Institut national polytechnique de Toulouse, Toulouse, France, Docteur."La gestion intĂ©grĂ©e de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociĂ©tĂ©s de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu Ă  l’autre. Il est possible de simplifier cette question en s’attardant plutĂŽt aux deux destinations de l’eau. L’eau bleue forme les rĂ©serves et les flux dans l’hydrosystĂšme : cours d’eau, nappes et Ă©coulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphĂšre. Elle inclut l’eau consommĂ©e par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intĂ©ressant gĂ©nĂ©ralement qu’au devenir des dĂ©bits ou, plus rarement, Ă  la recharge des nappes. Le portrait global est alors manquant. Dans un mĂȘme temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de maniĂšre distincte les diffĂ©rents composants de cycle hydrologique. L’étude rĂ©alisĂ©e ici utilise l’outil de modĂ©lisation SWAT afin de rĂ©aliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystĂšme du bassin versant de la Garonne. Une premiĂšre partie du travail a permis d’affiner la mise en place du modĂšle pour rĂ©pondre au mieux Ă  la problĂ©matique posĂ©e. Un soin particulier a Ă©tĂ© apportĂ© Ă  l’utilisation de donnĂ©es mĂ©tĂ©orologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramĂštres du modĂšle a Ă©tĂ© testĂ© dans un contexte differential split sampling, en calant puis validant sur des annĂ©es contrastĂ©es en terme climatique afin d’apprĂ©hender la robustesse de la simulation dans un contexte de changements climatiques. Cette Ă©tape a permis une amĂ©lioration substantielle des performances sur la pĂ©riode de calage (2000-2010) ainsi que la mise en Ă©vidence de la stabilitĂ© du modĂšle face aux changements climatiques. Par suite, des simulations sur une pĂ©riode d’un siĂšcle (1960-2050) ont Ă©tĂ© produites puis analysĂ©es en deux phases : i) La pĂ©riode passĂ©e (1960-2000), basĂ©e sur les observations climatiques, a servi de pĂ©riode de validation Ă  long terme du modĂšle sur la simulation des dĂ©bits, avec de trĂšs bonnes performances. L’analyse des diffĂ©rents composants hydrologiques met en Ă©vidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbĂ©es au niveau du stock de neige et des dĂ©bits qui prĂ©sentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont Ă©tĂ© rĂ©alisĂ©es (2010-2050) en sĂ©lectionnant une gamme de scĂ©narios et de modĂšles climatiques issus d’une mise Ă  l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirĂ©es de la pĂ©riode passĂ©e : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la pĂ©riode estivale est telle qu’elle en vient Ă  rĂ©duire les flux d’évapotranspiration rĂ©elle, mettant en Ă©vidence le possible dĂ©ficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les dĂ©bits semblent cette fois en hausse pendant l’automne et l’hiver. Ces rĂ©sultats sont un signe de l’«accĂ©lĂ©ration» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des Ă©vĂšnements extrĂȘmes de prĂ©cipitation. Ce travail a permis de rĂ©aliser une analyse des variations de la plupart des composantes du cycle hydrologique Ă  l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour Ă©valuer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau.Integrated water resource management requires distinction between water paths that are directly available for society and those which are not. Water pathways, from precipitation to the oceans or the atmosphere, are highly variable from one place to another. The complexity of water pathways can be simplified by focusing on two main categories of water resources: blue water, which is the stock and flow moving into the hydrosystem that is directly available (e.g. rivers, lakes, aquifers and groundwater flow), and green water, which is the invisible flow of water vapor leaving the hydrosphere to the atmosphere. The latter includes the water used by forests, grasslands, rain fed crops, and the water in soils. However, many hydrological studies focus only on blue water, particularly the discharge or more rarely the ground water recharge, ignoring all green water components, therefore missing the overall picture. At the same time, climate change highlighted in recent years have been found to impact water pathway distributions by affecting different components of the hydrological cycle at the watershed scale. The study presented here exploits the SWAT hydrological model to assess the variation of different components of a hydrosystem facing climate change. The study area is the watershed of the Garonne River, where data is available. The first part of this work focused on refining the implementation of the model in order to better tackle the problem at hand. Particular attention has been paid to the use of gridded weather data (SAFRAN product) as well as to the simulation of snow present in the mountainous portion of the watershed. Calibration of the model parameters was tested through a differential split sampling method, based on calibration and validation using climatically contrasted periods, in order to test the robustness of the model. These steps led to a substantial improvement in the simulations performance over the calibration period (2000-2010) and demonstrated the robustness of the model within a climate change context. The improved SWAT model was next used to produce simulations over a hundred-year period (1960-2050), an analysis carried out in two steps: First, the past period (1960-2000) simulation, based on observed climatic data, was used to validate discharge simulations for which very good performance was obtained. Analysis of the different components of the hydrological cycle showed a strong impact on flows and stocks of green water, with a reduction of the water content in soil and a substantial increase in evapotranspiration. Blue water is mostly impacted in terms of snow stock and discharge flow, which both showed a substantial decrease. Secondly, hydrological projections were performed (2010-2050) based on a selection of climate scenarios and models, submitted to dynamic downscaling. Analysis of these projections partly confirmed the conclusions drawn from the historic period: i.e. a substantial impact on green water, with a decrease of the soil water content and an increase of potential evapotranspiration. The projections also revealed that the soil water content during the summer season is such that it reduces the actual evapotranspiration, highlighting possible future deficits of green water stocks. Furthermore, if the analysis of blue water components always presented a substantial decrease in the snowpack, discharge appears to increase during autumn and winter periods. These results indicate an "acceleration" of blue surface water components which is likely related to an increase in extreme rainfall events. In this study, an analysis of the variation of the main hydrological cycle components have been proposed at a watershed scales, confirming the importance of taking into account all these components to evaluate the climate change impact and more broadly environmental changes on water resources

    Challenges in reanalysis products to assess extreme weather impacts on agriculture: Study case in southern Sweden

    Get PDF
    The incidence of dry or wet day sequences has a great influence on crops management and development. The lack of spatialized observed data with appropriate temporal resolution to investigate the changes that has occurred during the last century regarding the length and frequencies of those sequences has led to reliance on reanalysis products. However, the question can be raised about the suitability of those products when evaluating such climate indices and their impacts on crop production. Different products are here investigated to evaluate how the succession of dry and wet days are depicted in Sweden. Results show that reanalysis product tends to overestimate the number of wet days and wet periods and underestimate dry periods. We also showed clearly that the frequency and intensity of dry and wet spells returned can differ widely between products. For instance, number of dry spell events can range from 1 to 11 over the same decade for two different products. This paper does not aim to classify the RPs regarding their goodness or efficiency but try to highlights the divergence between them in representation of spells which could generate substantial differences in climate impact analysis in agricultural modeling

    Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

    Get PDF
    Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and -31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources

    Caractérisation des ressources en eau des Pyrénées: present et scénarios à venir. Mémoires scientifiques du projet PIRAGUA, vol. 1.

    Get PDF
    [FR] Un fichier PDF avec la version prĂ©-imprimĂ©e du document; [EN] One PDF files with the pre-print version of the document; [ES] Un archivo PDF con la versiĂłn de pre-impresiĂłn del documento.[EN] This volume presents part of the results obtained during the international cooperation project PIRAGUA (EFA210/16), co-financed by the Interreg EFA Program (Spain-France-Andorra). Between 2018 and 2021, the PIRAGUA project addressed, through cross-border cooperation, the evaluation of the hydrological cycle and water resources in the Pyrenees, in the present and in the future, in the context of climate change. To do this, the project partners unified and homogenized the existing hydrological information, proposed hydrological indicators, analyzed the trends observed in said indicators, developed simulation models to know in detail the different components of the water balance, and carried out numerical simulations based on projections under different scenarios of greenhouse gas emissions to assess the consequences of climate change on the hydrological cycle and the water resources of the Pyrenees. The objective of this volume is to carry out a characterization of the surface and underground water resources of the Pyrenees, as well as the management and use of said resources (Chapter 1); analyze flow records, aquifer levels, and floods to determine spatial patterns and determine temporal trends observed in recent decades (Chapter 2); apply simulation tools to expand knowledge about the different components of the water balance of the Pyrenees (Chapter 3); and carry out a series of numerical simulation experiments to determine possible changes in the water balance and water resources of the Pyrenees throughout the 21st century, in a context of climate change (Chapter 4).[ES] Este trabajo presenta una parte de los resultados obtenidos durante el proyecto de cooperaciĂłn internacional PIRAGUA (EFA210/16), co-financiado por el Programa Interreg EFA (España-Francia-Andorra). Entre 2018 y 2021, el proyecto PIRAGUA abordĂł, mediante la cooperaciĂłn transfronteriza, la evaluaciĂłn del ciclo hidrolĂłgico y los recursos hĂ­dricos en los Pirineos, en el presente y en futuro, en el contexto del cambio climĂĄtico. Para ello, los socios del proyecto unificaron y homogeneizaron la informaciĂłn hidrolĂłgica existente, propusieron indicadores hidrolĂłgicos, analizaron las tendencias observadas en dichos indicadores, desarrollaron modelos de simulaciĂłn para conocer en detalle los distintos componentes del balance hĂ­drico, y realizaron simulaciones numĂ©ricas a partir de proyecciones climĂĄticas bajo distintos escenarios de emisiones de gases de efecto invernadero para evaluar las consecuencias del cambio climĂĄtico sobre el ciclo hidrolĂłgico y los recursos hĂ­dricos de los Pirineos. El objetivo de este volumen es realizar una caracterizaciĂłn de los recursos hĂ­dricos superficiales y subterrĂĄneos de los Pirineos, asĂ­ como de la gestiĂłn y uso de dichos recursos (CapĂ­tulo 1); analizar los registros de caudal, niveles de acuĂ­feros e inundaciones para determinar patrones espaciales y determinar las tendencias temporales observadas en las Ășltimas dĂ©cadas (CapĂ­tulo 2); aplicar herramientas de simulaciĂłn para ampliar el conocimiento sobre los distintos componentes del balance hĂ­drico de los Pirineos (CapĂ­tulo 3); y realizar una serie de experimentos de simulaciĂłn numĂ©rica para determinar los posibles cambios del balance hĂ­drico y los recursos hĂ­dricos de los Pirineos a lo largo del siglo XXI, en un contexto de cambio climĂĄtico (CapĂ­tulo 4).[FR] Ce travail prĂ©sente une partie des rĂ©sultats d'un projet de coopĂ©ration internationale du Programme Interreg EFA (Espagne-France-Andorre). Entre 2018 et 2021, le projet PIRAGUA (EFA210/16) a abordĂ©, par le biais de la coopĂ©ration transfrontaliĂšre, l'Ă©valuation du cycle hydrologique et des ressources hydriques dans les PyrĂ©nĂ©es, pour le prĂ©sent et l'avenir, dans le contexte du changement climatique. Pour cela, les partenaires du projet ont unifiĂ© et homogĂ©nĂ©isĂ© les informations hydrologiques existantes, proposĂ© des indicateurs hydrologiques, analysĂ© les tendances observĂ©es pour ces indicateurs, dĂ©veloppĂ© des modĂšles de simulation pour connaĂźtre les dĂ©tails du bilan hydrique et rĂ©alisĂ© des expĂ©riences de simulation numĂ©rique, afin d'Ă©valuer les consĂ©quences de scĂ©narios de changement climatique sur le cycle hydrologique et les ressources hydriques des PyrĂ©nĂ©es. L'objectif de ce volume est de rĂ©aliser une caractĂ©risation des ressources hydriques de surface et souterraines des PyrĂ©nĂ©es, de la gestion et de l'emploi des ressources (Chapitre 1) ; analyser les registres de dĂ©bit, le niveau des aquifĂšres et les inondations afin de dĂ©terminer des schĂ©mas spatiaux ainsi que les tendances temporelles observĂ©es ces derniĂšres dĂ©cennies (Chapitre 2) ; appliquer des outils de simulation pour rĂ©aliser un diagnostic des diffĂ©rents Ă©lĂ©ments du bilan hydrique des PyrĂ©nĂ©es (Chapitre 3); rĂ©aliser une sĂ©rie d'expĂ©riences de simulation pour dĂ©terminer les Ă©ventuels changements du bilan hydrique et des ressources hydriques des PyrĂ©nĂ©es tout au long du XXIᔉ siĂšcle, dans un contexte de changement climatique (Chapitre 4).This report was developed within the project EFA210/16 PIRAGUA (“EvaluaciĂłn y prospectiva de los recursos hĂ­dricos de los Pirineos en un contexto de cambio climĂĄtico, y medidas de adaptaciĂłn con impacto en el territorio / Evaluation et prospective des ressources en eau des PyrĂ©nĂ©es dans un contexte de changement climatique, et mesures d’adaptation avec un impact sur le territoire”), co-funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra program (POCTEFA 2014-2020) (65%) and the project’s partners: CSIC, UPV/EHU, UB, OE, IGME, CNRS, BRGM, INRAE and OBSA (35%).Peer reviewe

    CaracterizaciĂłn de los recursos hĂ­dricos de los Pirineos en la actualidad, y escenarios futuros [Informe]. Memorias cientĂ­ficas del proyecto PIRAGUA, vol. 1.

    Get PDF
    [ES] Un archivo PDF con la versiĂłn de pre-impresiĂłn del documento; [FR] Un fichier PDF avec la version prĂ©-imprimĂ©e du document; [EN] One PDF files with the pre-print version of the document.[EN] This volume presents part of the results obtained during the international cooperation project PIRAGUA (EFA210/16), co-financed by the Interreg EFA Program (Spain-France-Andorra). Between 2018 and 2021, the PIRAGUA project addressed, through cross-border cooperation, the evaluation of the hydrological cycle and water resources in the Pyrenees, in the present and in the future, in the context of climate change. To do this, the project partners unified and homogenized the existing hydrological information, proposed hydrological indicators, analyzed the trends observed in said indicators, developed simulation models to know in detail the different components of the water balance, and carried out numerical simulations based on projections under different scenarios of greenhouse gas emissions to assess the consequences of climate change on the hydrological cycle and the water resources of the Pyrenees. The objective of this volume is to carry out a characterization of the surface and underground water resources of the Pyrenees, as well as the management and use of said resources (Chapter 1); analyze flow records, aquifer levels, and floods to determine spatial patterns and determine temporal trends observed in recent decades (Chapter 2); apply simulation tools to expand knowledge about the different components of the water balance of the Pyrenees (Chapter 3); and carry out a series of numerical simulation experiments to determine possible changes in the water balance and water resources of the Pyrenees throughout the 21st century, in a context of climate change (Chapter 4).[ES] Este trabajo presenta una parte de los resultados obtenidos durante el proyecto de cooperaciĂłn internacional PIRAGUA (EFA210/16), co-financiado por el Programa Interreg EFA (España-Francia-Andorra). Entre 2018 y 2021, el proyecto PIRAGUA abordĂł, mediante la cooperaciĂłn transfronteriza, la evaluaciĂłn del ciclo hidrolĂłgico y los recursos hĂ­dricos en los Pirineos, en el presente y en futuro, en el contexto del cambio climĂĄtico. Para ello, los socios del proyecto unificaron y homogeneizaron la informaciĂłn hidrolĂłgica existente, propusieron indicadores hidrolĂłgicos, analizaron las tendencias observadas en dichos indicadores, desarrollaron modelos de simulaciĂłn para conocer en detalle los distintos componentes del balance hĂ­drico, y realizaron simulaciones numĂ©ricas a partir de proyecciones climĂĄticas bajo distintos escenarios de emisiones de gases de efecto invernadero para evaluar las consecuencias del cambio climĂĄtico sobre el ciclo hidrolĂłgico y los recursos hĂ­dricos de los Pirineos. El objetivo de este volumen es realizar una caracterizaciĂłn de los recursos hĂ­dricos superficiales y subterrĂĄneos de los Pirineos, asĂ­ como de la gestiĂłn y uso de dichos recursos (CapĂ­tulo 1); analizar los registros de caudal, niveles de acuĂ­feros e inundaciones para determinar patrones espaciales y determinar las tendencias temporales observadas en las Ășltimas dĂ©cadas (CapĂ­tulo 2); aplicar herramientas de simulaciĂłn para ampliar el conocimiento sobre los distintos componentes del balance hĂ­drico de los Pirineos (CapĂ­tulo 3); y realizar una serie de experimentos de simulaciĂłn numĂ©rica para determinar los posibles cambios del balance hĂ­drico y los recursos hĂ­dricos de los Pirineos a lo largo del siglo XXI, en un contexto de cambio climĂĄtico (CapĂ­tulo 4).[FR] Ce travail prĂ©sente une partie des rĂ©sultats d'un projet de coopĂ©ration internationale du Programme Interreg EFA (Espagne-France-Andorre). Entre 2018 et 2021, le projet PIRAGUA (EFA210/16) a abordĂ©, par le biais de la coopĂ©ration transfrontaliĂšre, l'Ă©valuation du cycle hydrologique et des ressources hydriques dans les PyrĂ©nĂ©es, pour le prĂ©sent et l'avenir, dans le contexte du changement climatique. Pour cela, les partenaires du projet ont unifiĂ© et homogĂ©nĂ©isĂ© les informations hydrologiques existantes, proposĂ© des indicateurs hydrologiques, analysĂ© les tendances observĂ©es pour ces indicateurs, dĂ©veloppĂ© des modĂšles de simulation pour connaĂźtre les dĂ©tails du bilan hydrique et rĂ©alisĂ© des expĂ©riences de simulation numĂ©rique, afin d'Ă©valuer les consĂ©quences de scĂ©narios de changement climatique sur le cycle hydrologique et les ressources hydriques des PyrĂ©nĂ©es. L'objectif de ce volume est de rĂ©aliser une caractĂ©risation des ressources hydriques de surface et souterraines des PyrĂ©nĂ©es, de la gestion et de l'emploi des ressources (Chapitre 1) ; analyser les registres de dĂ©bit, le niveau des aquifĂšres et les inondations afin de dĂ©terminer des schĂ©mas spatiaux ainsi que les tendances temporelles observĂ©es ces derniĂšres dĂ©cennies (Chapitre 2) ; appliquer des outils de simulation pour rĂ©aliser un diagnostic des diffĂ©rents Ă©lĂ©ments du bilan hydrique des PyrĂ©nĂ©es (Chapitre 3); rĂ©aliser une sĂ©rie d'expĂ©riences de simulation pour dĂ©terminer les Ă©ventuels changements du bilan hydrique et des ressources hydriques des PyrĂ©nĂ©es tout au long du XXIᔉ siĂšcle, dans un contexte de changement climatique (Chapitre 4).This report was developed within the project EFA210/16 PIRAGUA (“EvaluaciĂłn y prospectiva de los recursos hĂ­dricos de los Pirineos en un contexto de cambio climĂĄtico, y medidas de adaptaciĂłn con impacto en el territorio / Evaluation et prospective des ressources en eau des Pyrénées dans un contexte de changement climatique, et mesures d’adaptation avec un impact sur le territoire”), co-funded by the European Regional Development Fund (ERDF) through the Interreg V-A Spain France Andorra program (POCTEFA 2014-2020) (65%) and the project’s partners: CSIC, UPV/EHU, UB, OE, IGME, CNRS, BRGM, INRAE and OBSA (35%).N

    Modelling the hydroclimatic evolution of flow and stocks of green and blue water over the Garonne river watershed

    No full text
    La gestion intĂ©grĂ©e de la ressource en eau implique de distinguer les parcours de l’eau qui sont accessibles aux sociĂ©tĂ©s de ceux qui ne le sont pas. Les cheminements de l’eau sont nombreux et fortement variables d’un lieu Ă  l’autre. Il est possible de simplifier cette question en s’attardant plutĂŽt aux deux destinations de l’eau. L’eau bleue forme les rĂ©serves et les flux dans l’hydrosystĂšme : cours d’eau, nappes et Ă©coulements souterrains. L’eau verte est le flux invisible de vapeur d’eau qui rejoint l’atmosphĂšre. Elle inclut l’eau consommĂ©e par les plantes et l’eau dans les sols. Or, un grand nombre d’études ne portent que sur un seul type d’eau bleue, en ne s’intĂ©ressant gĂ©nĂ©ralement qu’au devenir des dĂ©bits ou, plus rarement, Ă  la recharge des nappes. Le portrait global est alors manquant. Dans un mĂȘme temps, les changements climatiques viennent impacter ce cheminement de l’eau en faisant varier de maniĂšre distincte les diffĂ©rents composants de cycle hydrologique. L’étude rĂ©alisĂ©e ici utilise l’outil de modĂ©lisation SWAT afin de rĂ©aliser le suivi de toutes les composantes du cycle hydrologique et de quantifier l’impact des changements climatiques sur l’hydrosystĂšme du bassin versant de la Garonne. Une premiĂšre partie du travail a permis d’affiner la mise en place du modĂšle pour rĂ©pondre au mieux Ă  la problĂ©matique posĂ©e. Un soin particulier a Ă©tĂ© apportĂ© Ă  l’utilisation de donnĂ©es mĂ©tĂ©orologiques sur grille (SAFRAN) ainsi qu’à la prise en compte de la neige sur les reliefs. Le calage des paramĂštres du modĂšle a Ă©tĂ© testĂ© dans un contexte differential split sampling, en calant puis validant sur des annĂ©es contrastĂ©es en terme climatique afin d’apprĂ©hender la robustesse de la simulation dans un contexte de changements climatiques. Cette Ă©tape a permis une amĂ©lioration substantielle des performances sur la pĂ©riode de calage (2000-2010) ainsi que la mise en Ă©vidence de la stabilitĂ© du modĂšle face aux changements climatiques. Par suite, des simulations sur une pĂ©riode d’un siĂšcle (1960-2050) ont Ă©tĂ© produites puis analysĂ©es en deux phases : i) La pĂ©riode passĂ©e (1960-2000), basĂ©e sur les observations climatiques, a servi de pĂ©riode de validation Ă  long terme du modĂšle sur la simulation des dĂ©bits, avec de trĂšs bonnes performances. L’analyse des diffĂ©rents composants hydrologiques met en Ă©vidence un impact fort sur les flux et stocks d’eau verte, avec une diminution de la teneur en eau des sols et une augmentation importante de l’évapotranspiration. Les composantes de l’eau bleue sont principalement perturbĂ©es au niveau du stock de neige et des dĂ©bits qui prĂ©sentent tous les deux une baisse substantielle. ii) Des projections hydrologiques ont Ă©tĂ© rĂ©alisĂ©es (2010-2050) en sĂ©lectionnant une gamme de scĂ©narios et de modĂšles climatiques issus d’une mise Ă  l’échelle dynamique. L’analyse de simulation vient en bonne part confirmer les conclusions tirĂ©es de la pĂ©riode passĂ©e : un impact important sur l’eau verte, avec toujours une baisse de la teneur en eau des sols et une augmentation de l’évapotranspiration potentielle. Les simulations montrent que la teneur en eau des sols pendant la pĂ©riode estivale est telle qu’elle en vient Ă  rĂ©duire les flux d’évapotranspiration rĂ©elle, mettant en Ă©vidence le possible dĂ©ficit futur des stocks d’eau verte. En outre, si l’analyse des composantes de l’eau bleue montre toujours une diminution significative du stock de neige, les dĂ©bits semblent cette fois en hausse pendant l’automne et l’hiver. Ces rĂ©sultats sont un signe de l’«accĂ©lĂ©ration» des composantes d’eau bleue de surface, probablement en relation avec l’augmentation des Ă©vĂšnements extrĂȘmes de prĂ©cipitation. Ce travail a permis de rĂ©aliser une analyse des variations de la plupart des composantes du cycle hydrologique Ă  l’échelle d’un bassin versant, confirmant l’importance de prendre en compte toutes ces composantes pour Ă©valuer l’impact des changements climatiques et plus largement des changements environnementaux sur la ressource en eau.Integrated water resource management requires distinction between water paths that are directly available for society and those which are not. Water pathways, from precipitation to the oceans or the atmosphere, are highly variable from one place to another. The complexity of water pathways can be simplified by focusing on two main categories of water resources: blue water, which is the stock and flow moving into the hydrosystem that is directly available (e.g. rivers, lakes, aquifers and groundwater flow), and green water, which is the invisible flow of water vapor leaving the hydrosphere to the atmosphere. The latter includes the water used by forests, grasslands, rain fed crops, and the water in soils. However, many hydrological studies focus only on blue water, particularly the discharge or more rarely the ground water recharge, ignoring all green water components, therefore missing the overall picture. At the same time, climate change highlighted in recent years have been found to impact water pathway distributions by affecting different components of the hydrological cycle at the watershed scale. The study presented here exploits the SWAT hydrological model to assess the variation of different components of a hydrosystem facing climate change. The study area is the watershed of the Garonne River, where data is available. The first part of this work focused on refining the implementation of the model in order to better tackle the problem at hand. Particular attention has been paid to the use of gridded weather data (SAFRAN product) as well as to the simulation of snow present in the mountainous portion of the watershed. Calibration of the model parameters was tested through a differential split sampling method, based on calibration and validation using climatically contrasted periods, in order to test the robustness of the model. These steps led to a substantial improvement in the simulations performance over the calibration period (2000-2010) and demonstrated the robustness of the model within a climate change context. The improved SWAT model was next used to produce simulations over a hundred-year period (1960-2050), an analysis carried out in two steps: First, the past period (1960-2000) simulation, based on observed climatic data, was used to validate discharge simulations for which very good performance was obtained. Analysis of the different components of the hydrological cycle showed a strong impact on flows and stocks of green water, with a reduction of the water content in soil and a substantial increase in evapotranspiration. Blue water is mostly impacted in terms of snow stock and discharge flow, which both showed a substantial decrease. Secondly, hydrological projections were performed (2010-2050) based on a selection of climate scenarios and models, submitted to dynamic downscaling. Analysis of these projections partly confirmed the conclusions drawn from the historic period: i.e. a substantial impact on green water, with a decrease of the soil water content and an increase of potential evapotranspiration. The projections also revealed that the soil water content during the summer season is such that it reduces the actual evapotranspiration, highlighting possible future deficits of green water stocks. Furthermore, if the analysis of blue water components always presented a substantial decrease in the snowpack, discharge appears to increase during autumn and winter periods. These results indicate an "acceleration" of blue surface water components which is likely related to an increase in extreme rainfall events. In this study, an analysis of the variation of the main hydrological cycle components have been proposed at a watershed scales, confirming the importance of taking into account all these components to evaluate the climate change impact and more broadly environmental changes on water resources

    Testing the SWAT Model with Gridded Weather Data of Different Spatial Resolutions

    No full text
    This study explored the influence of the spatial resolution of a gridded weather dataset when inputted in the soil and water assessment tool (SWAT) over the Garonne River watershed. Several datasets are compared: ground-based weather stations, the 8-km SAFRAN product (SystĂšme d’Analyse Fournissant des Renseignements AdaptĂ©s Ă  la Nivologie), the 0.5° CFSR product (Climate Forecasting System Reanalysis) and several derived SAFRAN grids upscaled to 16, 32, 64 and 128 km. The SWAT model, calibrated on weather stations, was successively run with each gridded weather dataset. Performances with SAFRAN up to 64 or 128 km were poor, due to a contraction of the spatial variance of daily precipitation. Performances with 8-km SAFRAN are similar to that of the aggregated 16- and 32-km SAFRAN grids. The ~30-km CFSR product was found to perform well at some sites, while in others, its performance was considerably inferior because of grid points where precipitation was overestimated. The same problem was found in the calibration, where data at some weather stations did not appear to be representative of the subwatershed in which they are used to compute hydrology. These results suggest that the difference in the representation of the climate was more influential than its spatial resolution, an analysis that was confirmed by similar performances obtained with the SWAT model calibrated on the 16- and 32-km SAFRAN grids. However, the better performances obtained from these two weather datasets than from the ground-based stations’ dataset confirmed the advantage of using the SAFRAN product in SWAT modelling

    Impact of climate change on Swedish agriculture: Growing season rain deficit and irrigation need

    Get PDF
    Over 90% of Swedish agriculture is rainfed, and thus future climate change can pose a risk to agricultural production in coming decades. An overall increase in annual precipitation is predicted for northern Europe, but Sweden could still face an increasing need for irrigation, as shown by the drought summer of 2018. Adaptation of Swedish agriculture to include irrigated agriculture should thus be considered. To evaluate the theoretical need for irrigation, calculations were performed for different locations in Sweden, and for different soil-crop pairs at each location. In-situ weather data from a projected climate dataset created by the Swedish Meteorological and Hydrological Institute were used to evaluate changes in irrigation need over the period 1981–2050. The results showed an increasing need for irrigation of cereal crops during the early season (May–June), for two main reasons: i) A shift to an earlier start of the cropping period, leading to an earlier need for irrigation; and ii) a higher probability of dry spring weather, substantially increasing the irrigation requirement in dry years. Crops for which the growing season starts later (e.g., potatoes) showed an increasing need for irrigation during July. Crop development stages were predicted to occur earlier, leading to earlier harvesting, reducing the irrigation requirement in August. However, the calculation approach developed for this study may have underestimated the need for irrigation, which could be higher than reported here

    Coevolution of Hydrological Cycle Components under Climate Change: The Case of the Garonne River in France

    No full text
    International audienceClimate change is suspected to impact water circulation within the hydrological cycle at catchment scale. A SWAT model approach to assess the evolution of the many hydrological components of the Garonne catchment (Southern France) is deployed in this study. Performance over the calibration period (2000-2010) are satisfactory, with Nash-Sutcliffe ranging from 0.55 to 0.94 or R 2 from 0.86 to 0.98. Similar performance values are obtained in validation (1962-2000). Water cycle is first analyzed based on past observed climatic data (1962-2010) to understand its variations and geographical spread. Comparison is then conducted against the different trends obtained from a climate ensemble over 2010-2050. Results show a strong impact on green water, such as a reduction of the soil water content (SWC) and a substantial increase in evapotranspiration (ET) in winter. In summer, however, some part of the watershed faces lower ET fluxes because of a lack of SWC to answer the evapotranspiratory demand, highlighting possible future deficits of green water stocks. Blue water fluxes are found significantly decreasing during summer, when in winter, discharge in the higher part of the watershed is found increasing because of a lower snow stock associated to an increase of liquid precipitation, benefiting surface runoff
    corecore